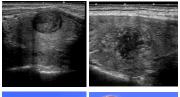
日本超音波医学会第52回関西地方会学術集会会期:2025年12月13(土) 場所:大阪国際会議場

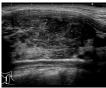
場所: 大阪国際会議場 発表時間: 16:05~16:55 (総合討論有)

甲状腺エコーの診断改革

症例が示す、**超音波と病理**の"対話"の重要性

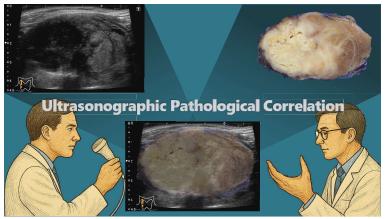

西川 紗世* 廣川 満良**

隈病院 臨床検査科* 病理診断科**


演題発表に関連し、開示すべきCOI状態はありません

Kuma

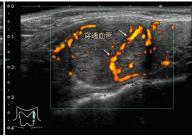
超音波所見と肉眼所見の対比



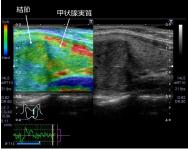
症例1

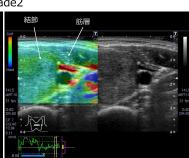
- 27歳 女性
- 現病歴:他院にて甲状腺左葉に腫瘤を指摘
- 理学所見:左葉に20mm大の腫瘍を触知
- 生化学所見:

		基準範囲
FT4	1.29 ng/dL	(0.9~1.7 ng/dL)
FT3	3.09 pg/mL	$(2.3\sim4 \text{ pg/mL})$
TSH	1.960 μIU/mL	(0.61~4.23 μIU/mL)
サイログロブリン	163.0 ng/mL	(0~46.05 ng/mL)
抗サイログロブリン抗体	<28.0 IU/mL	(0∼40 IU/mL)


超音波画像

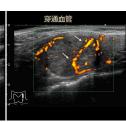
超音波画像 / ドプラ画像





超音波画像 / ストレインエラストグラフィ

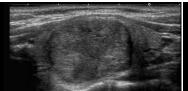
Grade2



考察される推定病変

形状整、境界部低エコー帯あり 等エコー

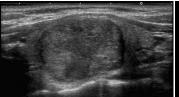
 \longrightarrow


濾胞性腫瘍


微細高工]-

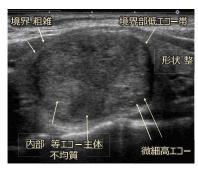
乳頭癌

本例


剂 濾胞性腫瘍

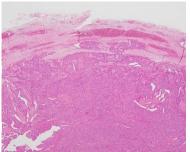

-			
	整	形状	整
	明瞭 粗雑	境界	明瞭 平滑
	あり	境界部 低工コー帯	あり
	不均質	内部工コー均質性	均質
	等 ~やや低	内部エコーレベル	等
	あり	微細高工コー	なし

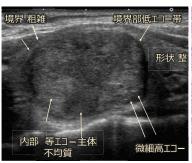
本例

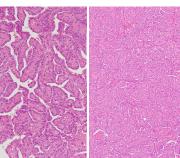

整	形状	不整
明瞭 粗雑	境界	明瞭 粗雑
あり	境界部 低工コー帯	なし
不均質	内部工コー均質性	不均質
等 ~やや低	内部エコーレベル	低
あり	微細高TT-	あり

推定病変:濾胞性腫瘍

鑑別診断:乳頭癌


症例 1

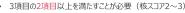



症例1

境界 粗雑 境界部低工コー帯 形状 整 微細高工工

症例 1

乳頭癌の定義 乳頭状増殖は必ずしも必要ではない

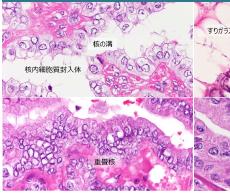


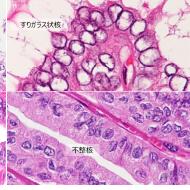
甲状腺癌取扱い規約第9版

腫瘍細胞の核所見によって特徴づけられる濾胞細胞由来の悪性腫瘍

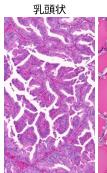
- (淡明化、すりガラス状)
- 3項目の2項目以上を満たすことが必要(核スコア2~3)

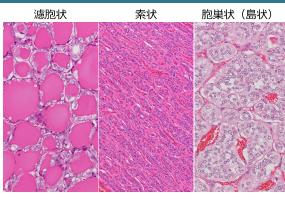
• 核形 (腫大、伸長、重畳)、核膜 (不整、核の溝、核内細胞質封入体)、クロマチン

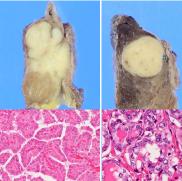



WHO分類第5版

Malignant tumour of follicular cell derivation characterized by distinct nuclear features


· PTC diagnosis requires either papillary or solid/trabecular architecture, or invasive growth in follicular-patterned tumours


乳頭癌の診断基準




乳頭癌の増殖パターン

乳頭癌の肉眼像

甲状腺結節の内部エコーレベルと性状

病変	内部エコーレベル	性状
腺腫様甲状腺腫	等 ~ やや低	不均質 > 均質
濾胞性腫瘍	等~低	均質
乳頭癌	低	不均質
髄様癌	低 > 等	不均質 > 均質
未分化癌	低	不均質
リンパ腫	極めて低	均質~不均質

甲状腺結節の内部エコーレベルによる悪性の頻度と内訳

等工コー結節(n=163)	低工コー結節(n=111)
3.1% (5)	22.5% (25)
60% (3)	60% (15)
40% (2)	12% (3)
0% (0)	28% (7)
	3.1% (5) 60% (3) 40% (2)

乳頭癌における等エコーレベルの割合

		高エコーまたは等エコー
	通常型乳頭癌 (n=55)	20.0% (11)
	浸潤性被包型 <mark>濾胞型</mark> 乳頭癌 (n=32)	46.9% (15)
濾胞構造 主体	膨大細胞型 (n=20)	35.0% (7)
	NIFTP 非浸潤性 <mark>濾胞性</mark> 腫瘍 (n=14)	64.3% (9)

Hekimsoy İ, et al. Front Endocrinol (Lausanne). 2024 Aug 14; 15:1434787.

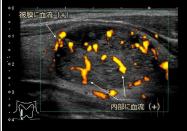
本例のTake Home Message

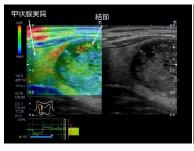
- 等エコーの乳頭癌もあり得る
- 等エコーは濾胞状腫瘍に見られやすいが、乳頭状構造が主体でも等エコーを示すことがある
- 少数でも微細高エコーがある場合は注意を払う

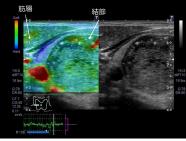
症例2

- 29歳 男性
- 現病歴: 頚部腫脹を自覚し、他院細胞診にて乳頭癌と診断され、当院を紹介受診
- ・ 理学所見:右葉に50mm大の軟らかい結節を触知 気管との癒着はなく、可動性良好
- 生化学所見:

		基準範囲
FT4	1.59 ng/dL	(0.9~1.7 ng/dL)
FT3	4.32 pg/mL	(2.3~4 pg/mL)
TSH	1.240 μIU/mL	(0.61~4.23 μIU/mL)
サイログロブリン	203.0 ng/mL	(0~46.05 ng/mL)
抗サイログロブリン抗体	<28.0 IU/mL	(0~40 IU/mL)

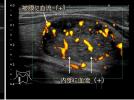

超音波画像



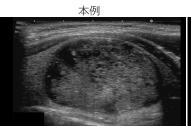


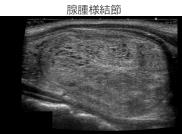
超音波画像 / ストレインエラストグラフィ

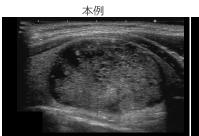
Grade2

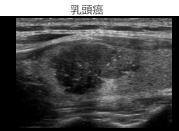


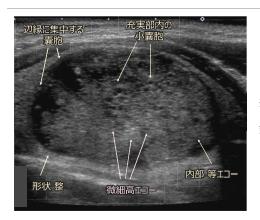
考察される推定病変



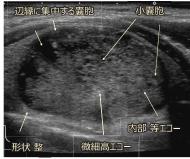


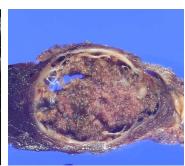

 形状·整、等エコー、嚢胞
 腺腫様結節


 微細高エコー
 乳頭癌



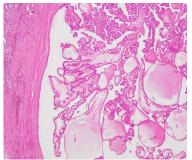
整	形状	整
明瞭 粗雑	境界	明瞭 平滑
不均質	内部工コー均質性	不均質
等	内部エコーレベル	等
あり	囊胞	あり
あり	微細高工コー	あり

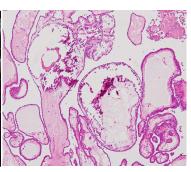

整	形状	不整
明瞭 粗雑	境界	明瞭 粗雑
等	内部エコーレベル	低
あり	囊胞	なし
あり	微細高工コー	あり



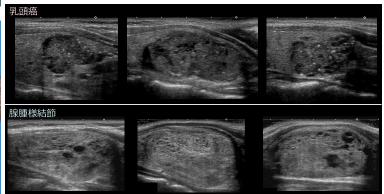
推定病変:腺腫様結節

鑑別診断:乳頭癌

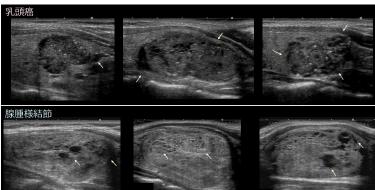

症例 2

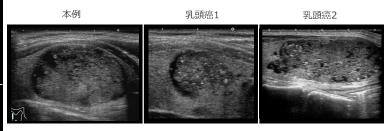

症例 2

症例 2


被膜を持つ乳頭癌

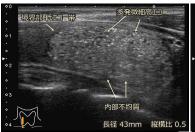
Discussion



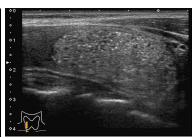

部分的に嚢胞を伴う乳頭癌と腺腫様結節

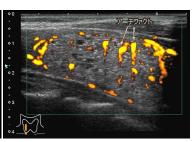
部分的に嚢胞を伴う乳頭癌と腺腫様結節

本例のTake Home Message


嚢胞が ①結節の辺縁に集中、②形状が不規則、③地図状 の場合は乳頭癌を考慮

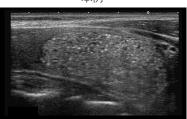
症例3


- 69歳 女性
- 現病歴:感冒で近医受診時、甲状腺腫大を指摘され来院


ы	X		理学所見:右葉に1 生化学所見:	5mm大の可動性良好	よ軟らかい結節
	A THE STANDARD AND A STANDARD AS A STANDARD A STANDA	1:			基準範囲
THE CONTRACTOR OF THE PROPERTY			FT4	0.95 ng/dL	$(0.7{\sim}1.6 \text{ ng/dL})$
N			FT3	2.56 pg/mL	(1.7~3.7 pg/mL)
			TSH	1.348 μIU/mL	(0.3~5 μIU/mL)
			サイログロブリン	48.28 ng/mL	(0~46.05 ng/mL)
The state of the s			抗サイログロブリン抗体	≤ 28.0 IU/mL	(0∼40 IU/mL)
		TREAT			

超音波画像 / ドプラ画像

考察される推定病変



形状·整、境界部 低工コー帯 等エコー、内部血流 乏しい

腺腫様結節

微細高エコー 多発 乳頭癌 本例

腺腫様結節

整

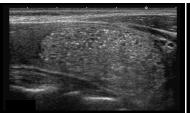
明瞭 平滑

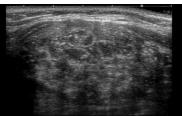
あり

不均質

等

あり



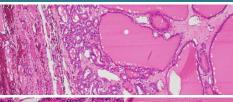

内部エコーレベル

微細高エコー

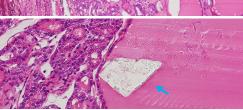
本例

乳頭癌

整	形状	不整
明瞭 平滑	境界	不明瞭 粗雑
あり	境界部 低工コー帯	なし
不均質	内部工コー均質性	不均質
等	内部エコーレベル	等~低
あり	微細高工7-	あり

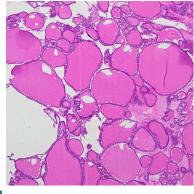


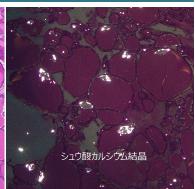
推定病変: 腺腫様結節


鑑別診断:乳頭癌

なし

症例3

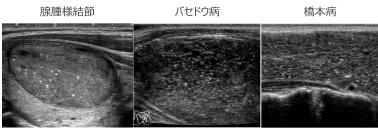

シュウ酸カルシウム結晶 ($>100~\mu m$) 甲状腺良性病変における多発微細高エコーの原因


バセドウ病

腺腫様甲状腺腫

Suzuki A, et al. J Med Ultrason (2001). 2024 Jul;51(3):517-523.

症例3



多発微細高II-

- 音響陰性を認めない、1mm以下の高エコー焦点
- 砂粒体(石灰化小体)に相当し、乳頭癌の約30~50%にみられる^{1,2)}
- 良性病変でもみられることがあるが、その由来は石灰化とは限らない^{3,4)}
 - → シュウ酸カルシウム結晶

多発微細高エコーがみられる良性病変

超音波画像

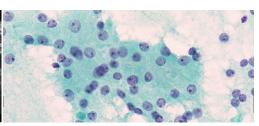
本例のTake Home Message

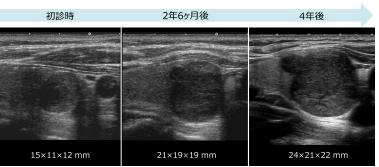
- ・ 微細高エコーは良性病変でも見られ、シュウ酸カルシウム結晶に由来する
- 超音波上、微細高エコーの由来を区別できない
- 多発微細高エコーのみでは悪性を示唆できない

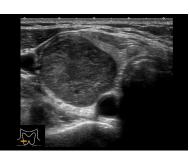
症例4

- 60歳 女性(初診時)
- 現病歴:他院にて甲状腺右葉下極に結節を認め、副甲状腺腫瘍疑いで来院
- 理学所見:記載なし
- 生化学所見:

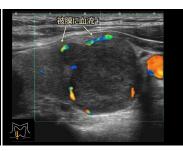
	初診時	基準範囲
FT4	1.07 ng/dL	(0.9~1.7ng/dL)
FT3	3.68 pg/mL	(2.3~4pg/mL)
TSH	4.100 μIU/mL	(0.61~4.23μIU/mL)
サイログロブリン	12.40 ng/mL	(0~46.05ng/mL)
抗サイログロブリン抗体	<28.0 IU/mL	(0~40IU/mL)
Ca	9.8 mg/dL	(8.2~10.2mg/dL)
P	3.7 mg/dL	(2.5~4.5mg/dL)
iPTH	未測定	

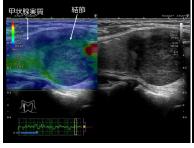

細胞診施行

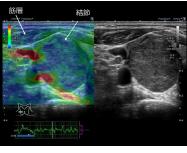


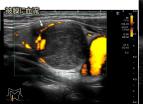


超音波画像 経過


超音波画像 初診から4年後


超音波画像 / ドプラ画像 初診から4年後

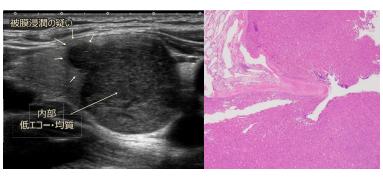



超音波画像 / ストレインエラストグラフィ 初診から4年後

Grade 3

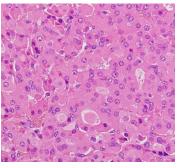


推定病変:濾胞癌



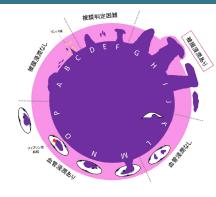
症例 4

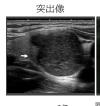




症例4

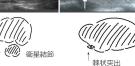
症例 4

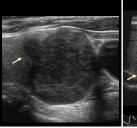



膨大細胞腺腫 / 膨大細胞癌

- 以前は、好酸性細胞型濾胞腺腫 /好酸性細胞型濾胞癌
 - 腫瘍の75%以上が膨大細胞
 - 肉眼的に褐色調
 - 細胞質: 顆粒状、豊富、好酸性
 - 核:二核が目立つ、クロマチンは粗大顆粒状、しばしば過染色性
 - 細胞質内には豊富なミトコンドリア
- ・細胞診では「膨大細胞腫瘍」として報告
- ・ 被膜浸潤、血管浸潤、転移のどれかがあれば癌

被膜浸潤・血管浸潤の判定


濾胞癌を示唆する超音波所見




Borowczyk M,et al.Cancers(Basel),2021 Feb 24;13,937. Li W,et al.Cancer Manag Res.2021;13:3991–4002. Liu X,et al. Thyroid.2016;26:256–261. Liu BJ,et al. Clin Hemorheol Microcirc.2020;75:291–301.

本例のTake Home Message

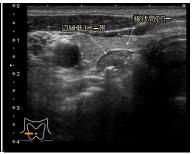
濾胞癌1

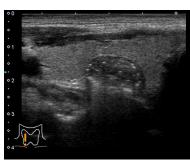
濾胞癌2

濾胞性腫瘍の経過観察中は、 大きさの変化に加えて、突出像、衛星結節、形状不整などの出現に注視

症例5


- 87歳 男性
- 現病歴:他院にて未分化癌が疑われたため来院(疼痛・急速増大なし)
- 理学所見:甲状腺に腫瘤を触知せず、圧痛なし
- 生化学所見:


Discussion	
0	

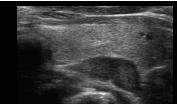

		基準値
FT4	0.95 ng/dL	(0.7~1.6ng/dL)
FT3	2.20 pg/mL	$(1.7 \sim 3.7 \text{pg/mL})$
TSH	1.565 μIU/mL	(0.3∼5µIU/mL)
サイログロブリン	1.8 ng/mL	(0~35ng/mL)
抗サイログロブリン抗体	43.1 IU/mL	(∼39.9 IU/mL)
白血球数	4,480/µL	(3,500∼9,000/µL)
LD	180 IU/L	(105~215 IU/L)

超音波画像

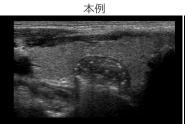
超音波画像 / ドプラ画像

考察される推定病変

- E	線状高工フー 辺縁 低エフー帯	版技高13年	以如 加來 (-)
	微細高工コー 甲	₩## <u>#</u> ##	i i web


線状高エコー 辺縁低エコー帯	_	甲状腺外結節	\rightarrow	音響陰 微細高I		\rightarrow	食道憩室
	十九万水入下市		\longrightarrow	形状・整 柞	惰円形	\rightarrow	副甲状腺腺腫
甲状腺背面と結節背面に 連続性	_	→ 甲状腺内結節	\rightarrow	形状・ 等エコ		\longrightarrow	腺腫様結節
		T-10018K JAPOEL	\longrightarrow	微細高工	::::-	\longrightarrow	乳頭癌

本例


腺腫様結節

あり	甲状腺・結節背面の連続性	なし
あり	線状高工コー	あり
あり	辺縁低エコー帯	あり
等~低	内部エコーレベル	等~低
あり	微細高工コー	あり
あり	音響陰影	あり

副甲状腺腺腫

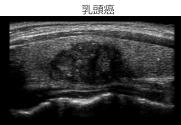
あり	線状高工コー	あり
あり	辺縁低エコー帯	なし
等~低	内部エコーレベル	低
不均質	内部工]-均質性	均質
あり	微細高工コー	なし
あり	音響陰影	なし

あり

明瞭 平滑

あり

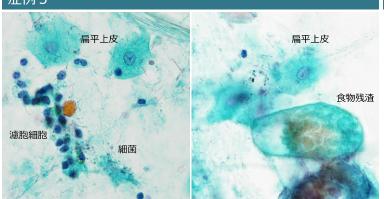
等~低


不均質

あり

なし

本例



整	形状	不整
明瞭 平滑	境界	不明瞭 粗雑
あり	辺縁低エコー帯	なし
等~低	内部エコーレベル	低
不均質	内部工コー均質性	不均質
あり	微細高工コー	あり

推定病変:食道憩室

症例 5

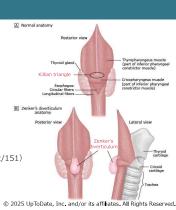
食道憩室

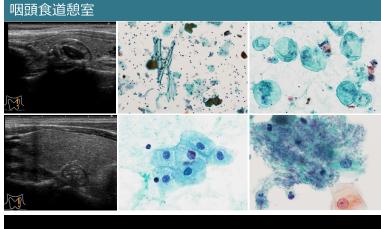
病態 食道が袋状に突出

発生部位 上部 (咽頭食道憩室) Zenker憩室(輪状咽頭筋の上)

Killian-Jamieson憩室(輪状咽頭筋の下)

中部(気管分岐部憩室) 下部 (横隔膜上憩室)

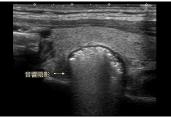

頻度 $0.01\% \sim 0.11\%$


当院: 0.1% (151/152,365)

USで甲状腺結節と判断した症例 7.9% (12/151)

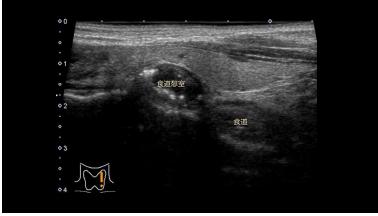
部位 左側: 91.4% 右側: 8.6%

Siddiq MA, et al. Postgrad Med J. 2001;77:506-11. 太田寿, 他. 超音波検査技術 2021;46:183-192



食道憩室の超音波所見

音響陰影


【発生部位】 甲状腺背面

左側:80%以上1) 右側:8.6%2)

【超音波所見】 線状高工一 辺線低工□帯 → 食道壁 内部高工□ _ 食物残渣で気泡

【診断のポイント】 嚥下時に内容物の流動性を観察

1)吳 吉男,他,横医誌.2024;75:1-6. 2)太田 寿,超音波検証技.2021;46;183-192. 3) Amber R,et al. J Diagn Med Sonogr.2018;34;304-306.

本例のTake Home Message

- 線状高エコーと辺縁低エコー帯は食道憩室を示唆する重要な所見である
- 高エコー物質や音響陰影を石灰化物質と判断を誤らない
- 診断には、嚥下運動にて憩室内の流動性を確認する

Just visit our website "Kobe Thyroid Cytology Club"

& download the handouts of today's presentation!

Scan me!